ACC 2015 Core Cardiovascular Training Statement (COCATS 4)
(Revision of the 2008 COCATS Training Statement)

A Report of the ACC Competency Management Committee

TASK FORCE MEMBERS (AND SOCIETY REPRESENTATION)

Introduction/Steering Committee
Eric S. Williams, MD, MACC
Jonathan L. Halperin, MD, FACC
Valentin Fuster, MD, PhD, MACC

Task Force 1: Training in Ambulatory, Consultative, and Longitudinal Care
Chair: Valentin Fuster, MD, PhD, MACC
Chair: Jonathan L. Halperin, MD, FACC
Chair: Eric S. Williams, MD, MACC
Nancy Cho, MD, FACC
William Iobst, MD*
Debabrata Mukherjee, MD, FACC
Prashant Vashishnava, MD, FACC

Task Force 2: Training in Preventive Cardiovascular Medicine
Chair: Sidney C. Smith Jr., MD, FACC
Vera Bittner, MD, FACC
J. Michael Gaziano, MD, FACC
John C. Giacomin, MD, FACC
Quinn R. Pack, MD
Donna M. Polk, MD, MPH, FACC
Neil J. Stone, MD, FACC
Stanley Wang, MD, JD, MPH

Task Force 3: Training in Electrocardiography, Ambulatory Electrocardiography, and Exercise Testing
Chair: Gary J. Balady, MD, FACC
Vincent J. Bufalino, MD, FACC
Jeffrey T. Kuvin, MD, FACC
Lisa A. Mendes, MD, FACC
Joseph L. Schuller, MD

Task Force 4: Training in Multimodality Imaging
Chair: Jagat Narula, MD, PhD, FACC
Y.S. Chandrashekhar, MD, FACC
Vasken Dilsizian, MD, FACC
Mario J. Garcia, MD, FACC
Christopher M. Kramer, MD, FACC
Shaista Malik, MD, PhD, FACC
Thomas Ryan, MD, FACC
Soma Sen, MMBS, FACC
Joseph C. Wu, MD, PhD, FACC

Task Force 5: Training in Echocardiography
Chair: Thomas Ryan, MD, FACC, FASE
Kathryn Berlacher, MD, FACC
Jonathan R. Lindner, MD, FACC, FASE
Sunil V. Mankad, MD, FACC, FASE†
Geoffrey A. Rose, MD, FACC, FASE
Andrew Wang, MD, FACC

Task Force 6: Training in Nuclear Cardiology
Chair: Vasken Dilsizian, MD, FACC
James A. Arrighi, MD, FACC, FASNC‡
Rose S. Cohen, MD, FACC
Todd D. Miller, MD, FACC
Allen J. Solomon, MD, FACC
James E. Udelson, MD, FACC

Task Force 7: Training in Cardiovascular Computed Tomographic Imaging
Chair: Mario J. Garcia, MD, FACC
Ron Blankstein, MD, FACC
Matthew J. Budoff, MD, FSCAI§
John M. Dent, MD, FACC
Douglas E. Drachman, MD, FACC
John R. Lesser, MD, FACC
Maleah Grover-McKay, MD, FACC
Jeffrey M. Schussler, MD, FACC, FSCAI║
Szilárd Voros, MD, FACC‖
L. Samuel Wann, MD, MACC‡

Task Force 8: Training in Cardiovascular Magnetic Resonance Imaging
Chair: Christopher M. Kramer, MD, FACC
W. Gregory Hundley, MD, FACC
Raymond Y. Kwong, MD, MPH
Matthew W. Martinez, MD, FACC
Subha V. Raman, MD, FACC#
R. Parker Ward, MD, FACC

Task Force 9: Training in Vascular Medicine
Chair: Mark A. Creager, MD, FACC
Heather L. Gornik, MD, FACC**
Bruce H. Gray, DO††
Naomi M. Hamburg, MD, FACC
William F. Iobst, MD*
Emile R. Mohler, III, MD, FACC
Christopher J. White, MD, FACC

NOTE: This preliminary document contains proprietary information. It is posted for public comment and subject to change. It should not be disseminated except for review and comment for this public comment process. The final document will be revised and approved by the ACC Board of Trustees and endorsing organizations and published in the Journal of the American College of Cardiology.
Task Force 10: Training in Cardiac Catheterization
Chair: Spencer B. King, MD, MACC, FSCAI
Joseph D. Babb, MD, FACC, FSCAI
Eric R. Bates, MD, FACC, FSCAI
Michael H. Crawford, MD, FACC
George D. Dangas, MD, FACC, FSCAI
Michele D. Voeltz, MD, FACC
Christopher J. White, MD, FACC, FSCAI

Task Force 11: Training in Arrhythmia Diagnosis and Management, Cardiac Pacing, and Electrophysiology
Chair: Hugh Calkins, MD, FACC
Eric H. Awtry, MD, FACC
Thomas Jared Bunch, MD, FACC
Sanjay Kaul, MBBS, FACC
John M. Miller, MD, FACC
Usha B. Tedrow, MD, MSc‡‡

Task Force 12: Training in Heart Failure
Chair: Mariell Jessup, MD, FACC
Reza Ardehali, MD, PhD, FACC
Marvin A. Konstam, MD, FACC §§
Michael A. Mathier, MD, FACC
Bruno V. Manno, MD, FACC
John A. McPherson, MD, FACC
Nancy K. Sweitzer, MD, PhD, FACC

Task Force 13: Training in Critical Care Cardiology
Chair: Patrick T. O’Gara, MD, FACC
Jesse E. Adams, III, MD, FACC
Mark H. Drazner, MD, MSc, FACC
Julia H. Indik, MD, FACC
Ajay J. Kirtane, MD, FACC
Kyle W. Klarich, MD, FACC
L. Kristen Newby, MD, MHS, FACC
Benjamin M. Scirica, MD, MPH, FACC
Thoralf M. Sundt, II, MD, FACC

Task Force 14: Training in Care of Adult Patients with Congenital Heart Disease
Chair: Carole A. Warnes, MD, FACC
Ami B. Bhatt, MD, FACC
Curt J. Daniels, MD, FACC
Linda D. Gillam, MD, MPH, FACC
Karen K. Stout, MD, FACC

Task Force 15: Training in Cardiovascular Research and Scholarly Activity
Chair: Robert A. Harrington, MD, FACC
Ana Barac, MD, PhD, FACC
John E. Brush Jr., MD, FACC
Joseph A. Hill MD, PhD, FACC
Harlan Krumholz, MD, SM, FACC
Michael S. Lauer, MD, FACC
Chittur A. Sivaram, MBBS, FACC
Mark B. Taubman, MD, FACC
Jeffrey L. Williams, MD, FACC

ACC COMPETENCY MANAGEMENT COMMITTEE
Eric S. Williams, MD, MACC, Co-Chair
Jonathan L. Halperin, MD, FACC, Co-Chair
James A. Arrighi, MD, FACC
Rosario Freeman, MD, FACC
Eric H. Awtry, MD, FACC
Nkechinnyere Ijioma, MD
Eric R. Bates, MD, FACC
Jeffrey T. Kuvin, MD, FACC
Salvatore Costa, MD, FACC
Joseph E. Marine, MD, FACC
Lori Daniels, MD, FACC
John A. McPherson, MD, FACC
Akshay Desai, MD, FACC
Lisa A. Mendes, MD, FACC
Douglas E. Drachman, MD, FACC
Chittur A. Sivaram, MBBS, FACC
Susan Fernandes, LPD, PA-C
Andrew Wang, MD, FACC
Howard H. Weitz, MD, FACC

*American Board of Internal Medicine Representative, †American Society of Echocardiography Representative, ‡American Society of Nuclear Cardiology Representative, §§Society for Cardiovascular Angiography and Interventions Foundation Representative, ¶Society of Atherosclerosis Imaging and Prevention Representative. **Society for Cardiovascular Magnetic Resonance Representative, ††American Board for Vascular Medicine Representative, ‡‡Heart Rhythm Society Representative, and §§§Heart Failure Society of America Representative.
Dr. Lauer participated in this work as part of his official Federal duties. However, the opinions expressed in this paper do not necessarily reflect the official positions of the NHLBI, the NIH, or the U.S. Department of Health and Human Services.

This document was approved by the American College of Cardiology Board of Trustees in TBD. For the purpose of complete transparency, disclosure information for the ACC Board of Trustees, the board of the convening organization of this document, is available at: http://www.cardiosource.org/ACC/About-ACC/Leadership/Officers-and-Trustees.aspx.

Copies: This document is available on the World Wide Web sites of the American College of Cardiology (www.cardiosource.org). For copies of this document, please contact Elsevier Inc. Reprint Department, fax 212-633-3820, e-mail reprints@elsevier.com.

Permissions: Multiple copies, modification, alteration, enhancement, and/or distribution of this document are not permitted without the express permission of the American College of Cardiology. Please contact Elsevier’s permission department at healthpermissions@elsevier.com.

© 2015 by the American College of Cardiology Foundation.
1. Evolution of Training Recommendations for Specialists in Adult Cardiovascular Medicine

Recommendations for training in adult cardiovascular medicine were first published in the Journal of the American College of Cardiology in 1995 as a consensus statement emanating from the Core Cardiology Training Symposium (COCATS) held at Heart House in Bethesda, Maryland the previous year (1). The term “COCATS” has since been used when referring to the American College of Cardiology (ACC) curriculum recommendations for fellowship programs. The 1995 recommendations were contained in 10 Task Force reports covering overall training in clinical cardiology and specialized areas of cardiovascular medicine. As advances in cardiovascular science and technology evolved, training recommendations were revised extensively in 2002 and published as “COCATS 2” (2). In that iteration, the 10 original Task Force reports were updated and additional reports were developed that addressed training recommendations in vascular medicine and catheter-based peripheral vascular interventions and in cardiovascular magnetic resonance (CMR) imaging. Subsequent evolution necessitated further revisions, and training recommendations for cardiac electrophysiology and cardiac computed tomography (CCT) were first published in 2006 as an update to COCATS 2 (3) and then as a full revision (COCATS 3) in 2008 (4). As in previous COCATS documents, the terms ‘fellow’ and ‘trainee’ are used interchangeably, as are the terms ‘cardiovascular medicine’ and ‘cardiology’.

2. Oversight of Postgraduate Education for Specialists in Cardiovascular Medicine

Regulatory oversight of training in internal medicine and its subspecialties is provided by the Accreditation Council for Graduate Medical Education (ACGME), and its Internal Medicine Residency Review Committee. The ACGME establishes both common and subspecialty-specific program requirements regarding training duration, institutional infrastructure, faculty leadership and clinician educators, training environment and safety, as well as the minimum requirements for program content. While the ACGME accredits training programs, the American Board of Internal Medicine (ABIM) certifies individuals as specialists in Cardiovascular Disease. Successful completion of training in a program with ACGME accreditation is a requirement to sit for the ABIM – Cardiovascular Disease certifying examination. Although ACGME, ABIM, and COCATS represent independent bodies, their alignment is important, and COCATS has been an important contributor to the development of the training requirements for Cardiovascular Disease. COCATS provides
additional curricular content detail beyond the ACGME minimum requirements for general cardiovascular disease to define progressive levels of skill and competency in designated areas.

Over the past several years, there has been a progressive move toward competency-based training, the key characteristic of which is evaluation focused on specific learner outcomes. Central requirements are to delineate the specific components of competency within the subspecialty, to define the tools necessary to assess training, and to establish milestones that should be met as fellows progress toward independence. This evolution is manifested in COCATS 4, including the overarching 6-domain structure (Table 1) promulgated by ACGME and endorsed by ABIM and the American Board of Medical Specialties (5).

Table 1. ACGME Core Competencies

- **Patient Care** – that is compassionate, appropriate, and effective for treating health problems and promoting health.
- **Medical Knowledge** – about established and evolving biomedical, clinical, and cognate (e.g., epidemiological and social-behavioral) sciences and the application of this knowledge to patient care.
- **Practice-Based Learning and Improvement** – that involves investigation and evaluation of their own patient care, appraisal, and assimilation of scientific evidence, and improvements in patient care.
- **Interpersonal and Communication Skills** – that result in effective information exchange and teaming with patients, their families, and other health professionals.
- **Professionalism** – as manifested through a commitment to carrying out professional responsibilities, adherence to ethical principles, and sensitivity to a diverse patient population.
- **Systems-Based Practice** – as manifested by actions that demonstrate an awareness of and responsiveness to the larger context and system of health care and the ability to effectively call on system resources to provide care that is of optimal value.

These minimum general competencies were endorsed by the ACGME in February 1999 (www.acgme.org) and all Residency Review Committees and Institutional Review Committees were to include this minimum language in their respective Program and Institutional Requirements by June 2001. The definitions are available at http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3043418/. These competencies should be interpreted, developed and evaluated in the context of subspecialty training, recognizing that more basic competencies in these domains will or should have been acquired during residency training in internal medicine, a prerequisite for cardiovascular fellowship. Furthermore, maintenance of core competencies over the course of one’s professional career is as important as their initial acquisition.

Each COCATS Task Force Report that follows covers a specific field of competency in cardiovascular disease, includes curricular content (milestones) within each domain, and lists potential evaluation tools. It is important to emphasize several points regarding the competency tables that accompany each Task Force Report. First, each curricular milestone need not be independently evaluated or documented by a formal outcome measure; rather, representative components may be assessed, or in some cases assessed in aggregate. Second, the curricular milestones provide an underpinning for the more global ACGME reporting milestones (6); the ACC will also provide tools to facilitate mapping of the relevant curricular competencies that support achievement of the more global ACGME reporting milestones. This is intended to help training program directors respond to

NOTE: This preliminary document contains proprietary information. It is posted for public comment and subject to change. It should not be disseminated except for review and comment for this public comment process. The final document will be revised and approved by the ACC Board of Trustees and endorsing organizations and published in the Journal of the American College of Cardiology.
this reporting requirement. Third, the 12-, 24-, 36-month designation that appears in each competency table is intended as a roadmap for a typical fellow as an aid to determining whether an individual fellow is progressing on-track toward independent competency. Training programs vary widely in the sequence of educational experiences, and fellows vary in the pace at which they achieve competency. The time estimates are simply examples and may, therefore, not apply to all programs or trainees. Variability is expected and acceptable, as long as programs provide mechanisms to assess the development of key competencies over time.

The aggregated competencies described in COCATS 4 form the basis for the overarching Entrustable Professional Activities (EPAs) of our profession; namely, those activities that patients and the public expect all competent clinical cardiologists can perform (Table 2).

Table 2. Entrustable Professional Activities for Subspecialists in Cardiovascular Disease

- **Cardiovascular Consultation** – evaluate, diagnose, and develop treatment plans for patients with known, suspected, or at risk of developing cardiovascular disease
- **Acute Cardiac Care** – manage patients with acute cardiac conditions
- **Chronic Cardiovascular Disease Management** – manage patients with chronic cardiovascular diseases
- **Cardiovascular Testing** – appropriately utilize cardiovascular testing
- **Disease Prevention and Risk Factor Control** – implement disease prevention and risk factor control measures, addressing comorbidities
- **Team-Based Care** – work effectively to promote patient-centered interdisciplinary team-based care
- **Lifelong Learning** – engage in lifelong learning

Some human resource professionals draw a distinction between the terms ‘competence’ and ‘competency’, using ‘competence’ to describe the actions necessary to perform a function optimally (concerned with effect and output rather than effort and input), and ‘competency’ to describe the behaviors that lie behind optimum performance, such as critical thinking or analytical skills (describing what individuals bring to the profession). Based on awareness that performance requires a combination of behavior, attitude, and action, the 2 terms are used interchangeably in the task force reports.

3. Revision of Training Components Since Earlier Iterations of COCATS

This iteration of COCATS contains a number of structural changes in the cardiovascular curriculum since the recommendations issued in 2008. There is a substantially stronger focus on ambulatory, consultative, and longitudinal care, reflecting a commitment to patient-centric education.
in clinical cardiology. The intent is that training of the cardiologist as a consultant with a longitudinal
commitment to the care of the patient be pervasive throughout the 3-year general cardiology
fellowship. The curriculum also includes a requirement that continuity clinics be integrated with
service rotations in specialized fields such as heart failure, congenital heart disease, geriatric
cardiology, arrhythmias to encompass training in this context.

Two task force reports address areas of training not covered in previous editions of COCATS,
critical care cardiology and multimodality noninvasive cardiovascular imaging. A third report
expands considerably on the pursuit of research and scholarly activity during fellowship training. This
revision emphasizes the importance of active participation in research and scholarly activities and
outlines a variety of approaches and formats to meet this important academic requirement for
cardiology trainees in the context of a commitment to life-long learning.

This revision of COCATS incorporates the training recommendations for the 4 basic
noninvasive imaging modalities – echocardiography (Task Force 5), nuclear cardiology (Task Force
6), CCT (Task Force 7), and CMR (Task Force 8), introduced in a new section on multimodality
imaging (Task Force 4). Each was written by individual writing groups and represents a revision of a
previously published document, except for multimodality imaging, which includes the Chairs of the
Task Forces for each component imaging modality and experts in multimodality imaging. In the
previous training paradigm, fellows often rotated through these laboratories as individual silos of
imaging technologies, with individual conferences and separate didactic teaching offerings attached to
each modality. The 2008 Task Force indicated that novel methods of training (e.g., allowing
concurrent training and consolidating curricula among modalities) could allow fellows to develop
higher-level expertise in more than 1 modality in a 3-year fellowship (4). It is increasingly important
to utilize multimodality imaging principles in conferences and didactic sessions and critically discuss
the benefits and limitations of various imaging techniques for a given clinical indication.

As described in the echocardiography (Task Force 5) report, competence in transesophageal
echocardiography and contrast echocardiography is necessary to achieve Level II training (defined in
Section 5); basic competence in stress echocardiography can be achieved in Level II training, but
additional training beyond Level II is recommended for full competence and independence in this
technique.

The need for core training in procedural techniques, such as electrocardiography, ambulatory
monitoring, and conventional exercise stress testing, is clearly defined, with the expectation that
trainees will develop increasing sophistication in the application of these techniques over the course
of the 36-month fellowship. Training in interventional cardiology as described in the Task Force 10
report is limited to formal training programs in the United States that satisfy the basic standards
developed by the American Council for Graduate Medical Education (ACGME) and are accredited by
the ACGME. This Level III training must be achieved during a fourth year of dedicated fellowship experience.

The Task Force 11 report indicates more specific procedural time and case volume to gain expertise in cardiac implantable electronic device (CIED) management. Training in heart failure and transplantation as outlined in the Task Force 12 report has been revised relative to the 1995 and 2002 reports. Level III training in heart failure acknowledges the requirements of the United Network for Organ Sharing (UNOS) for heart transplant physicians. Level III heart failure training will require at least 1 additional year of training in advanced heart failure and transplantation.

4. Migration to a Competency-Based Curriculum

COCATS 4 utilizes the 6 general competency domains promulgated by the ACGME (Table 1) to define the core competencies in clinical cardiology and structure the curriculum for training to achieve them. The ACC has also adopted this format for its competency and training statements, career milestones, lifelong learning, and educational programs and developed tools to assist physicians in assessing, enhancing, and documenting competencies.

Each task force report includes a table delineating the competency domains and associated curricular milestones for training. The milestones are categorized into Level I, Level II, and Level III training (defined below) and indicate the stage of fellowship training (12, 24 or 36 months, and additional time points) by which the typical trainee should achieve the designated level of competence. The tables also describe potential evaluation tools for assessment of competence in each domain. Level I competencies may be achieved at earlier or later time points. While these tables delineate key competency components, they are not comprehensive, and the full spectrum of competency components required of Level I trained cardiologists is embodied in the task force reports that together delineate the training requirements and scope of curriculum.

It is vital to the excellence of a training program that faculty help trainees develop clinical skills and supervise, guide and critique performance and interpretation of procedures. Although minimum numbers of procedures that should be completed with acceptable outcomes to achieve levels of training are provided in some cases, performance and interpretation of a given number of procedures is not synonymous with satisfactory completion nor sufficient to define adequate training. The numbers of procedures performed, interpreted, or both have been developed consistent with volume recommendations found in the ACC/American Heart Association (AHA) practice guidelines, ACC/AHA/American College of Physicians (ACP) clinical competence statements, expert consensus statements or other relevant consensus documents, when available, but volumes of tests or procedures performed and/or interpreted successfully to achieve competence are intended as general guidance, based on the educational needs and progress of typical trainees. Similarly, approximate timeframes...
are guides to facilitate scheduling, reflecting the periods required by the typical trainee to gain requisite knowledge, skills, and experience in each subdiscipline. Given the complexity and time constraints of training program, many of the requirements in time and case numbers in various procedures may be obtained concurrently. Examples include training in stress testing during rotations in echocardiography or nuclear cardiology and experience in CMR or CCT interpretation during other imaging rotations.

5. Structure and Levels of Training

The ABIM subspecialty board on cardiovascular disease requires 3 years of cardiology fellowship training. Additional training beyond the standard 3-year general cardiology fellowship is required to sit for certification examinations in clinical cardiac electrophysiology, interventional cardiology, advanced heart failure and transplant cardiology, and adult congenital heart disease. As outlined in this document, additional years of training are also recommended for trainees who desire advanced expertise in specialized areas, those who want dedicated time for basic and/or clinical research training, or both. In this revision of COCATS, recommendations for such advanced training experiences are proposed relative to the discipline of cardiovascular medicine addressed.

Throughout the task force reports, training is defined in terms of the following levels:

- **Level I** – The basic training required of all trainees to be competent consultant cardiologists. This can be accomplished during a standard 3-year training program in general cardiology.

- **Level II** – This refers to the additional training in 1 or more areas that enables some cardiologists to perform or interpret specific diagnostic tests and procedures or render more specialized care for specific patients and conditions. This level of training is recognized only for those areas in which a nationally accepted instrument or benchmark, such as a qualifying examination, is available to measure specific knowledge, skills, or competence. Level II training may be achieved by some trainees in selected areas during the standard 3-year general cardiology fellowship, based on the trainee’s career goals and use of elective periods.

- **Level III** – This level of training requires additional experience beyond the general cardiology fellowship to acquire specialized knowledge and competencies in performing, interpreting, and training others to perform specific procedures or render advanced, specialized care at a high level of skill. Level III training cannot generally be obtained during the standard 3-year general cardiology fellowship and requires additional exposure in a program that meets requirements delineated in Advanced Training Statements.
The emphasis of COCATS is on Level I training, delineating competencies that all cardiology fellows must acquire during the standard fellowship that follows residency training in internal medicine. Level II training is defined for fields in which specific competencies can be undertaken during about 6 months of the 3-year training period, depending upon the career focus of trainees, and measured by a standardized qualifying instrument such as a subspecialty examination. Level II training is not available or described for fields lacking this criterion. Level III training is described only in broad terms to provide context for trainees and clarify that these advanced competencies are not covered during the general cardiology fellowship and require an additional period of training and designation by an independent accrediting board, often coupled with a certifying examination. The advanced training requirements required to achieve Level III competency are addressed in subsequent, separately published clinical competence and advanced training statements.

A summary of the various clinical rotations is depicted in a conceptual format in Figure 1. It is important to emphasize that the intent of this diagram is to illustrate relationships among and potential overlaps across the various clinical and educational experiences during fellowship training rather than the specific sequence or duration of rotations. Trainees vary with respect to the length of time spent in each area of study based upon prior experience, aptitude, career goals and interests. Training in cardiovascular medicine involves the acquisition of specialized skills and capabilities in specific technologies and, as well as experiences in longitudinal care and scholarly activity that are pervasive across virtually the entire fellowship period. For the typical fellow, approximately half a year during the standard 3-year fellowship could be allocated to pursuits aligned with the individual’s choice for subsequent advanced training. In general it is desirable to devote this elective time to complementary fields rather than an attempt to abbreviate advanced training, requirements for which are delineated in separate specialty-specific documents. The individual Task Force reports that include sections on Level III training provide about ancillary fields upon which fellows may choose to focus during general cardiology training to better prepare them for advanced training in their area of interest.

The rapid evolution of cardiovascular science and cardiovascular medicine requires that all training programs have an experienced faculty, adequate facilities, and a rich assortment of didactic offerings for fellows. Specific components are addressed in each task force report. Case-based conferences are vital to train fellows and develop their skills in evidence-based decision-making. Self-learning is emphasized, and Internet-based, online educational programs, many of which are interactive, play an increasingly important role in learning during fellowship and beyond. Such didactic activities are outlined throughout the task force reports. In most clinical rotations, emphasis
should be placed on evidence-based practice guideline recommendations, standards for recording clinical data, and appropriate use criteria for diagnostic and therapeutic procedures.

The COCATS Steering Committee, Task Force chairs and members, and ACC recognize the need to assist trainees, faculty, and program directors with the transition from the historical curriculum that was based on exposure time and case volume to the current competency-based model, including the need for faculty development tools to facilitate the assessment of competency among fellows in training. The developers of COCATS are also aware of other challenges facing fellowship programs during this transitional period related to ACGME reporting requirements, and the writing groups allow for flexibility in implementation as long as the emphasis on competency-based learning is preserved.

6. Evaluation of Competency and Reporting of Educational Milestones

A key characteristic of competency- and curricular milestone-based training is integration with outcomes-based evaluations. Evaluation of competence is an integral, continuous, and critical part of the educational process for the cardiology fellow across the spectrum of training. Evaluation tools include a variety of modalities, such as direct observation by instructors, in-training examinations, procedure logbooks, conference and case presentations, multisource evaluations, trainee portfolios, simulation, and self-reflection. Case management, judgment, interpretive and technical skills must be evaluated regularly in every trainee and discussed with the trainee at least twice annually. Quality of care and follow-up, reliability, judgment or decisions or actions that result in complications, interaction with other physicians, patients, and laboratory support staff, initiative, and the ability to make appropriate independent decisions should be considered.

The ACGME distinguishes levels of advancement in each of the general competencies using milestones that describe a developmental progression from early learner status, advancing or improving competency, readiness for unsupervised practice, and at the pinnacle, aspirational achievement by learners. The program must develop an evaluation system that accurately determines each fellow’s progression along this developmental continuum. Mechanisms should be incorporated so that fellows who perform suboptimally or exhibit critical deficiencies can be counseled and provided with opportunities for corrective action. Likewise, fellows who are progressing appropriately should be challenged to excel. With the curricular competency milestones, the ACC provides a schema for evaluating the trainee’s progressive competency development over the course of the training program. This curricular milestone framework facilitates specific feedback to trainees as they progress through training.
As much as possible, methods for evaluation and documentation of competence have been standardized across the various task force reports. An optimum training environment includes bidirectional evaluations, in which faculty evaluate and provide positive or negative feedback to trainees and trainees evaluate faculty. The program director should review these evaluations with the trainee and faculty individually and collectively at group meetings with fellows and faculty that address the curriculum and training environment. Formal evaluations of fellows and faculty should occur after each rotation; timely evaluations better enable trainees to process and incorporate feedback into their learning objectives. By using a competency and curricular milestone-based framework, the ACC has identified specific observable behaviors that ideally are easier to evaluate. In addition to easing evaluation, this format should also aid in providing more specific feedback to trainees as they progress through multiple levels of training.

Evaluation may be accomplished by a variety of modalities on a daily basis. This should include the aforementioned tools, but may include other innovative evaluation methods as available. Overall clinical progress and deficiencies should also be assessed for each trainee at least twice annually by the training program’s Clinical Competency Committee and reported with recommendations to the cardiology fellowship program director. Evaluations are ultimately the responsibility of the fellowship program director and should take place at least twice annually for each fellow using a variety of evaluation tools.

7. Composition of the Task Forces and Integration of Training Recommendations

As knowledge in cardiovascular medicine continues to expand, training must keep pace. This report represents a consensus, created using the overall format of the previous COCATS documents. Individual task forces were empaneled to address each component of training in cardiology and structured similarly to include representatives of the ACC and key cardiovascular subspecialty organizations for a given field of study, a cardiovascular training program director who was not a subspecialist in the subject of the particular report, a training program director in the particular field, an early career cardiologist practicing in the field who completed fellowship training within 5 to 8 years, experienced specialists practicing in both academic and community-based practice settings, and physicians experienced in developing and applying training standards according to the core competencies structure promulgated by the ACGME, ABIM, and ABMS.

The writing groups reviewed the 2008 COCATS 3 task force reports and made revisions, additions, and deletions based on data from the literature and expert opinion. Major changes in curricular content most often related to evolution of subspecialty areas in cardiology and widespread
acceptance of emerging technologies in clinical practice. Collectively, the task force reports reflect a broad effort to establish consistent training criteria across all aspects of cardiology.

8. Document Review and Endorsement

The entire document was peer reviewed by the ACC Competency Management Committee, the Cardiology Workforce and Training Committee, and a member of the ACC Board of Trustees and the Board of Governors. Individual task force reports were reviewed by the following ACC councils: Task Force 2 – Prevention of Cardiovascular Disease Section Leadership Council; Task Forces 3 and 11 – Electrophysiology Section Leadership Council; Task Forces 4 to 8 – Imaging Section Leadership Council; Task Force 9 – Peripheral Vascular Disease Section Leadership Council; Task Force 10 – Interventional Section Leadership Council; Task Force 12 – Heart Failure and Transplant Section Leadership Council; and Task Force 15 – Academic Cardiology Section Leadership Council.

Representatives from several organizations also reviewed the document: Introduction and Task Forces 1 and 9 – the ABIM; Task Force 5 – the American Society of Echocardiography; Task Forces 6 and 7 – the American Society of Nuclear Cardiology; Task Force 7 – the Society of Cardiovascular Computed Tomography and the Society of Atherosclerosis Imaging and Prevention; Task Forces 7, 9, and 10 – the Society for Cardiovascular Angiography and Interventions; Task Force 8 – the Society for Cardiovascular Magnetic Resonance; Task Force 9 – the Society for Vascular Medicine; Task Force 11 – the Heart Rhythm Society; and Task Force 12 – the Heart Failure Society of America. The American Heart Association reviewed the entire document.

9. Author Affiliations

The Steering Committee is grateful for the time and effort devoted to this COCATS revision by the Task Force members and reviewers who provided valuable input. Staff of the American College of Cardiology Foundation provided superb support to the COCATS effort, and their contributions are recognized with appreciation.

The ACC determined that relationships with industry or other entities were not relevant to the creation of this general cardiology training statement. Employment and affiliation information for authors and peer reviewers are provided in Appendices 1 and 2, respectively, along with disclosure reporting categories. Comprehensive disclosure information for all authors, including relationships with industry and other entities, is available as an online supplement to this document.

Key Words: ACC Training Statement • COCATS • fellowship training • clinical competence.
APPENDIX 1. AUTHOR RELATIONSHIPS WITH INDUSTRY AND OTHER ENTITIES (RELEVANT)—ACC 2015 COCATS 4 INTRODUCTION

<table>
<thead>
<tr>
<th>Committee Member</th>
<th>Employment</th>
<th>Consultant</th>
<th>Speakers Bureau</th>
<th>Ownership/Partnership/Principal</th>
<th>Personal Research</th>
<th>Institutional/Organizational or Other Financial Benefit</th>
<th>Expert Witness</th>
</tr>
</thead>
<tbody>
<tr>
<td>Valentin Fuster</td>
<td>Mount Sinai School of Medicine, Zena and Michael A. Wiener Cardiovascular Institute—Director</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Jonathan L. Halperin</td>
<td>Mount Sinai School of Medicine—Professor of Medicine</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Eric S. Williams</td>
<td>Indiana University School of Medicine—Professor, Associate Dean; Academic Affairs Cardiovascular Program Co-Director, Executive Vice President</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
</tbody>
</table>

For the purpose of developing a general cardiology training statement, the ACC determined that no relationships with industry or other entities are relevant. This table reflects author’s employment and reporting categories. To ensure complete transparency, authors’ comprehensive healthcare-related disclosure information — including RWI not pertinent to this document — is available online (see Online Appendix 3). Please refer to http://www.cardiosource.org/Science-And-Quality/Practice-Guidelines-and-Quality-Standards/Relationships-With-Industry-Policy.aspx for definitions of disclosure categories or additional information about the ACC Disclosure Policy for Writing Committees.
APPENDIX 2. PEER REVIEWER RELEVANT RELATIONSHIPS WITH INDUSTRY AND OTHER ENTITIES—ACC 2015 COCATS 4 INTRODUCTION

<table>
<thead>
<tr>
<th>Name</th>
<th>Employment</th>
<th>Representation</th>
<th>Consultant</th>
<th>Speaker’s Bureau</th>
<th>Ownership/ Partnership/ Principal</th>
<th>Personal Research</th>
<th>Institutional/ Organizational or Other Financial Benefit</th>
<th>Expert Witness</th>
</tr>
</thead>
<tbody>
<tr>
<td>Richard Kovacs</td>
<td>Krannert Institute of Cardiology—Professor, Clinical Medicine</td>
<td>Official Reviewer, ACC Board of Trustees</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Dhanunjaya Lakkireddy</td>
<td>Kansas University Cardiovascular Research Institute</td>
<td>Official Reviewer, ACC Board of Governors</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Howard Weitz</td>
<td>Thomas Jefferson University Hospital Jefferson Health System—Co-Director; Vice Chairman, Department of Medicine</td>
<td>Official Reviewer, Competency Management Committee Lead Reviewer</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Alex Auseon</td>
<td>Ohio State University Medical Center—Assistant Professor, Clinical Medicine, Division of Cardiology</td>
<td>Content Reviewer, Academic Cardiology Section Leadership Council</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Goeffrey Barnes</td>
<td>University of Michigan</td>
<td>Organizational Reviewer, SVM</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Dennis Calnon</td>
<td>MidOhio Cardiology and Vascular Consultants—Director, Nuclear Imaging</td>
<td>Organizational Reviewer, ASNC</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Kenneth Ellenbogen</td>
<td>VCU Medical Center—Director, Clinical Electrophysiology Laboratory</td>
<td>Content Reviewer, Cardiology Training and Workforce</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Name</td>
<td>Institution/Position</td>
<td>Content Reviewer, Sports and Exercise Cardiology Section Leadership Council</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>-----------------------</td>
<td>---</td>
<td>---</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
</tr>
<tr>
<td>Michael Emery</td>
<td>Carolina Cardiology Consultants</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bulent Gorenek</td>
<td>Eskisehir Osmangazi University Medical School</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>John Hodgson</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Brian Hoit</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Howard Julien</td>
<td>Jefferson Hospital</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Andrew Kates</td>
<td>Barnes-Jewish Hospital—Director, Cardiovascular Fellowship Program</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>So Kim</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NOTE: This preliminary document contains proprietary information. It is posted for public comment and subject to change. It should not be disseminated except for review and comment for this public comment process. The final document will be revised and approved by the ACC Board of Trustees and endorsing organizations and published in the Journal of the American College of Cardiology.
COCATS 4 Introduction

ACC Proprietary Public Comment Draft

December 19, 2014

<table>
<thead>
<tr>
<th>Name</th>
<th>Organization</th>
<th>Role</th>
<th>None</th>
<th>None</th>
<th>None</th>
<th>None</th>
<th>None</th>
<th>None</th>
</tr>
</thead>
<tbody>
<tr>
<td>Allan Klein</td>
<td>Cleveland Clinic Foundation—Professor, Medicine and Director, Cardiovascular Imaging Research</td>
<td>Organizational Reviewer, ASE</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Kousik Krishnan</td>
<td>Rush University Medical Center—Associate Professor, Medicine & Pediatrics</td>
<td>Organizational Reviewer, Heart Rhythm Society</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Warren Manning</td>
<td>Beth Israel Deaconess Medical Center, Division of Cardiology—Professor, Medicine and Radiology</td>
<td>Organizational Reviewer, SCMR</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Furman McDonald</td>
<td>American Board of Internal Medicine—Vice President Graduate Medical Education, Department of Academic Affairs and Professor, Medicine</td>
<td>Organizational Reviewer, ABIM</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Richard Patten</td>
<td>Lahey Hospital And Medical Center—Division of Cardiovascular Medicine</td>
<td>Organizational Reviewer, HFSA</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Kristen Patton</td>
<td>University of Washington Medical Center</td>
<td>Content Reviewer, Electrophysiology Section Leadership Council</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Robert Piana</td>
<td>Vanderbilt University Medical Center—Professor, Medicine, Cardiology</td>
<td>Content Reviewer, Interventional Council</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Gregory Piazza</td>
<td>Brigham and Women's Hospital/Harvard Medical School—Cardiovascular Division</td>
<td>Content Reviewer, PVD Council</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Tanveer Rab</td>
<td></td>
<td>Content Reviewer, Interventional Council</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
</tbody>
</table>

NOTE: This preliminary document contains proprietary information. It is posted for public comment and subject to change. It should not be disseminated except for review and comment for this public comment process. The final document will be revised and approved by the ACC Board of Trustees and endorsing organizations and published in the Journal of the American College of Cardiology.
For the purpose of developing a general cardiology training statement, the ACC determined that no relationships with industry or other entities are relevant. This table reflects peer reviewers’ employment, representation in the review process, as well as reporting categories. Names are listed in alphabetical order within each category of review.
The COCATS curriculum for Level I training in cardiovascular medicine. This schematic summarizes the components of training during the standard 3-year cardiology fellowship. The various clinical rotations are depicted in a conceptual format to illustrate relationships and potential overlap across the various educational experiences rather than the sequence or duration of rotations. Basic experiences in the acute hospital setting typically occur mainly during the first 24 months, though in some cases some may be deferred to the third year. Exposure to noninvasive diagnostic testing modalities typically occurs at various points throughout the fellowship, as trainees gain ability to integrate with increasing sophistication the information generated by these modalities into patient care. The outer ring of the diagram denotes longitudinal experiences that pervade the entire fellowship training period, including consultative, ambulatory, and longitudinal patient care and integration of disease prevention strategies into patient management. Proportionate timeframes indicated for each experience represent those required by the typical fellow to acquire the required competencies, but should be considered approximate. Depending upon available resources and particular characteristics in some training programs and the background, skills, and career goals of individual trainees, it may be possible to combine certain components of training or to develop certain competencies concurrently with others. Elective time may be devoted to additional training in 1 or more areas selected based on the needs and career goals of the individual trainee. This additional exposure will enable some trainees to gain Level II competence to perform or interpret certain procedures or render more specialized care for specific patients and conditions. Time allocated to research and scholarly activity may be scheduled continuously or at specific points in the 36-month fellowship, depending upon the trainee’s prior experience, rate of progress, and professional objectives.
References

